Machine learning classification of resting state functional connectivity predicts smoking status
نویسندگان
چکیده
منابع مشابه
Machine learning classification of resting state functional connectivity predicts smoking status
Machine learning-based approaches are now able to examine functional magnetic resonance imaging data in a multivariate manner and extract features predictive of group membership. We applied support vector machine (SVM)-based classification to resting state functional connectivity (rsFC) data from nicotine-dependent smokers and healthy controls to identify brain-based features predictive of nico...
متن کاملResting state functional connectivity predicts neurofeedback response
Tailoring treatments to the specific needs and biology of individual patients-personalized medicine-requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocol that can reduce contamination-related anx...
متن کاملResting-state functional connectivity predicts impulsivity in economic decision-making.
Increasing neuroimaging evidence suggests an association between impulsive decision-making behavior and task-related brain activity. However, the relationship between impulsivity in decision-making and resting-state brain activity remains unknown. To address this issue, we used functional MRI to record brain activity from human adults during a resting state and during a delay discounting task (...
متن کاملResting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Human Neuroscience
سال: 2014
ISSN: 1662-5161
DOI: 10.3389/fnhum.2014.00425